

ACOUSTIC DESIGN

ERIK IPSEN Head of Research & Design

DANOLINE

BACKGROUND

- Architect, M.A.A. (Member of the Danish Architect Association)
- Member of the Danish Acoustic Standardization Board
- Member of the Swedish Acoustic Standardization Board
- Member of the European Acoustic Standardization Board
- 20 years of experience with acoustical development
- Own testing facilities:
 - Sound absorption
 - Sound reduction
 - Sound diffusion

Icreating expressive

KNAUF DANOLINE

PERFORATED BOARDS

danoline[®] [creating expressive ceilings]

...........

......

.......

danoline® [creating expressive ceilings]

MITRED BOARDS

STRUCTURES

0 0

-

GOAL

SOUND CONTROL THOUGH ARCHITECTURE AND INTORIOR DESIGN

AGENDA

- SOUND
- REVERBERATION TIME
- SOUND CONTROLLING TOOLS
- SOLUTIONS SCHOOLS

0

dano

[creating expressive ceilings]

e

SOUND

danoline® [creating expressive ceilings]

20

.....

SOUND or NOISE

21

PERCEPTION OF SOUND

23

.

danoline[®] [creating expressive ceilings]

PERCEPTION OF SOUND

24

SOUND LEVEL

25

:::::::::

PURPOSE OF THE ACOUSTICS

26

REVEBERATION TIME

27

1.5

.

-

ROOMS FOR WORK

.......

ROOMS FOR SPEECH

29

REV. TIME: CLASSROOMS

Efterklangstid, 7 ²¹	
Klasserum	\leq 0,6 s
Undervisningsrum til sløjd	≤ 0,6 s
Undervisningsrum til sang og musik mindre end 250 m³ (korsang og	
akustisk musik) ^{2) ()}	<u></u> ,1 s
Undervisningsrum til sang og musik mindre end 250 m ³ (elektrisk	
forstærket) ²⁾	<u>≤0,6 s</u>
Gymnastiksale mindre end 3500 m ³	<u>≤ 1,6 s</u>
Gymnastiksale større end 3500 m ³	<u>≤1,8</u> s
Svømmehaller mindre end 1500 m ³	< 2,0 s
Svørnmehaller større end 1500 m ³	≤ 2.3 s
Fællesrum samt fællesgange, der benyttes til gruppearbejde og lignende	< 0.4 s
Fællesgange, der ikke benyttes til gruppearbejde og lignende.	< 0.9 s
Trapperum	< 1.3 s

Absorptionsareal, A ⁵¹	
Åbne undervisningsområder 2(7)	≥ 1,3 × gulva <u>real</u>
Fællesrum med offshøjde større end 4 m og rumvolumen større end 300 r	n ³ > 1,2 × gulvareal

30

danolir

[creating expressive ceilings]

e®

REVERBERATION TIME

31

EDUCATION ROOM

CLASSROOM 0.6 sec. (min. 0.4 sec.)

0

danolir

[creating expressive ceilings]

e°

....

danoline[®] [creating expressive ceilings]

CAUTION !!!

- DRY ACOUSTICS
- LARGE, PLAIN WALL SURFACES (USE OF WALL ABSORBERS)
- RISK OF GEOMETRIC REFLECTIONS
- LACK OF SOUND ABSORBING MATERIALS
- IRREGULAR ABSORPTION PROFILE
- LARGE CEILING HEIGHTS
- INCLINED CEILING AREAS WITHOUT ABSORBERS
- DOUBLE STOREY ROOMS WITH BALCONIES (MEZZANINE DECK)
- CURVED SURFACES
- PARALLEL HARD SURFACES
- CIRCULAR ROOM DESIGNS
- LACK OF DIFFUSION
- ROOM DIMENSIONS 2:1
- LARGE GLASS SURFACES
- FLOOR COVERINGS WITH DRUMMING SOUND

[creating expressive ceilings]

CLOSED ROOM

.........

REVERBERATION TIME

-

danoline[®] [creating expressive ceilings]

36

.

REVERBERATION TIME

PLAIN TILES

KINOPANEL

38

111111

-D - D

danoline[®] [creating expressive ceilings]

ECHO

8.5 m

50 ms = 17 m / 2 = 8.5

.....

REV. TIME – BEFORE AND AFTER

	125	250	500	1000	2000	4000
ABSORBERS IN A EMPTY ROOM	1,12	1,25	2,02	1,84	1,71	1,52
ABSORBERS AND DIFFUSERS	0,72	0,65	0,70	0,72	0,69	0,70
ABSORBERS, DIFFUSERS & FURNITURE	0,69	0,59	0,61	0,58	0,57	0,59

DIFFUSION / ABSORPTION

danoline[®] [creating expressive ceilings]

SUM UP

- EFFICIENT ABSORBERS IN CEILING GIVES RISK OF ECHOS.
- LACK OF DIFFUSION GIVES VERY LOW EFFECT OF ABSORBERS

dar

[creating expressive ceilings]

SOUND CONTROLLING TOOLS MATERIALS

43

.

m

ABSORBERS

44

danoline® [creating expressive ceilings]

ABSORBERS

- Visual skin
- Design
- Absorbs sound
- Diffuse sounds
- Reflect sounds
- Part of the indoor climate
- Reflects light
- Stability
- Breathes
- Fire security

da

[creating expressive ceilings]

ADIT – WALL LINING

47

creating expressive ceilings]

SPREADING OF SOUND

48

creating expressive ceilings]

SOUND WAVE LENGTH

49

danoline[®] [creating expressive ceilings]

00

REFLECTION

50

danoline® [creating expressive ceilings]

ACOUSTIC MATERIALS

- FIBROUS ABSORBERS
- PERFORATED ABSORBERS
- PERFORATED ABSORBERS WITH ACOUSTIC BACKING
- DIFFUSERS
- MEMBRANES
- SLIT ABSORBERS

51

dar

[creating expressive ceilings]

REFLECTION

danoline[®] [creating expressive ceilings]

52

MEMBRANE ABSORPTION

RESONANCE ABSORPTION

12222

RESONANCE ABSORPTION

DIFFUSION

E E

creating expressive ceilings]

PERFORATED BOARDS

PART OF

danoline[®] [creating expressive ceilings]

...........

......

EFFECTS OF PERFORATED TILES

SOUND REGULATING EFFECT

ACOUSTIC BALANCE

ABSORPTION PROFILE

AV 107004 DANAK 100922 Phys. 7 cl 8 Graph Skowl 2

Laboratory Measurement of Sound Absorption Coefficient according to EN ISO 354:2003

SPEECH CONTROL

AV 1233/07 DANAK 100/1090 Page Y of 8 Graph Shoot 2

danoline®

[creating expressive ceilings]

Laboratory Measurement of Sound Absorption Coefficient according to EN ISO 354:2003

..........

Text ansa: 10.8 m ⁴ Room volume: 215 m ³ Room volume: 205 m ³ Finequency n ₁ [Hz] n ₂ [Hz] 0.4	
**equatity n _y 0.9 0.9 (Hu) 0.4 0.4 0.4	_
125 0.40 2 0.4	_
256 0.65 5	
1000 0.75 2000 0.75	
4000 0.80 125 256 500 1000 2000 Frequence, 1942	

NOISE CONTROL

SUM UP

- PRODUCT ABSORPTION PROFILE CAN BE DESIGNED.
- ABSORPTION VALUES FOR SPEECH CONTROL UNDER 0,70 aw
- ABSORPTION PROFILE FOR NOISE REDUCTION OVER 0,70 aw

60

[creating expressive ceilings]

SOUND CONTROLLING TOOLS POSITIONING OF ABSORBERS

61

.....

....

NORMAL CEILING HEIGHT

63

danoline[®] [creating expressive ceilings]

........

NARROW ROOM

65

danoline® [creating expressive ceilings]

LARGE CEILING HEIGHT

67

danoline[®] [creating expressive ceilings]

m m

-Det

AMOUNT OF ABSORBERS

% of floor area

2.5 – 2.8 m	100% absorption materials on ceilings
2.8 – 3.2 m	115% absorption materials = (100% on ceiling +15% on walls)
3.2 – 3.8 m	120% absorption materials
3.8 – 4.0 m	125% absorption materials
above 4.0 m	No recommendation

danoline[®] [creating expressive ceilings]

0

danoline[®] [creating expressive ceilings]

SUM UP

- CEILING HIGH OVER 2,6 m SHOULD BE ADDED WITH WALL ABSORBERS.
- WORKPLACES WITH A CEILING HIGH OVER 4m IS NOT RECOMMANDED.

SOUND CONTROLLING TOOLS GEOMETRIC SOUND REGULATION

71

INCLINED CEILINGS

72

MEZZANINE

74

CURVED SURFACES

76

Der

INCLINED WALLS

80

danoline® [creating expressive ceilings]

D D D

-

ROUND ROOMS

84

danoline® [creating expressive ceilings]

STRUCTURED CEILINGS

89

SUM UP

- SOUND REGULATING MATERIALS SHOULD BE PLACED WHERE THE SOUNDWAVES HIT FIRST.
- STRUCTURES MIRRORS THE SOUNDWAVES / THINK ABOUT THE FORM OF THE STRUCTURE AND HOW IT REFLECTS SOUNDS.

91

[creating expressive ceilings]

SOUND CONTROLLING TOOLS FURNITURE

92

.

D. D.

FURNITURE

creating expressive ceilings]

93

CEILING TYPES

.....

danoline[®] [creating expressive ceilings]

0.0

. . .

CO

0

....

⁻⁻⁻⁻⁻

FURNITURE

96

danoline[®] [creating expressive ceilings]

.......

FURNITURE

DIFFERENT CEILING TYPES | NO WALL LININGS | MODERATE FURNISHING

.

....

danoline[®] [creating expressive ceilings]

FURNITURE AND WALL LININGS

FURNITURE AND WALL LININGS

DIFFERENT CEILING TYPES | WALL LININGS | MODERATE FURNISHING

99

dano

[creating expressive ceilings]

e⁶

FURNITURE DIFFUSION FACTOR

....

FURNITURE

.

SUM UP

- FURNITURE HAS A MAJOR INFLUENCE OF SOUND DIFFUSION / AND THE EFFECT OF HOW EFFICIENT A ABSORBER IS PERFORMING.
- THE EFFECT IS VERY IMPORTANT IN LARGE ROOM OFFICES.

102

[creating expressive ceilings]

SOLUTIONS

SCHOOLES

103

.

IMPORTANT FREQUENCIES

- CONSONANTS
- 250 3150 Hz
- The most important frequency 500 Hz

dar

[creating expressive ceilings]

.....

FREQUENCIES

20 -20.000 Hz

danoline® [creating expressive ceilings]

ROOMS FOR SPEECH

106

ROOMS FOR SPEECH

CEILING HEIGH

3 m

.....

00

danoline® [creating expressive ceilings]

1222

The P
danoline[®] [creating expressive ceilings]

ECHO

8.5 m

50 ms = 17 m / 2 = 8.5

DIMENSION

322222

BULK HEADS - DELAYED ECHOS

GOOD DIFFUSION

000

RISK OF DELAYED ECHO

ABSORPTION PROFILE under 0,70 aw

KRAUF

..........

danoline®

[creating expressive ceilings]

152

.

LEVELED REVERBERATION TIME

CLASSROOM 0.6 sec. (min. 0.4 sec.)

dano

[creating expressive ceilings]

e

CALCULATION OF REVERBERATION TIME

Volume: 210 m²

Calculation:

Placing of Face:	Area:	Description:	125	Hz	260	Hz	500	Hz	1000	Hz	2000	Hz	4000	Hz
Absorption [type]	[m²]			Am²		Am ²		Am ^c		Am ²		Am²		Am
20	24.0	Bealed double glazed window	0 I J	2,40	70,07	1,68	°C,05	1 20	0,05	1,20	0,02	0,48	0.02	043
22	υu	j_ghtocor	0.25	U,/5	0,2U	J,6U	U,15	U75	U,1U	0,00	J,UU	0,24	UJ/	0.21
82	70.0	Linoleum on concrete	0.02	17/10	0,02	1,10	0,03	2 10	0,0/	2,80	D,04	2,30	°C 02	3.00
18	75.0	2-12 5mm gyp-om wall w 5cm min whole	0.15	1.25	ח,ור	7,50	Г <u>,</u> 16	4.51	0,04	3,00	1,04	3,10	C 15	375
신신	7በ በ	դրի ին, տիկարգի	015	10,60	n,16	11,50	1,15	10 51	0,15	10,50	า, ธ	11,50	C 15	16.67
121	7C 0	Contur 600 M1 suspended (200 mm	040	20,C0	0,55	30,50	C,55	45 50	0,C0	42,CC	0,60	42,00	C 55	OC 50
					·								····-	
						Ļļ				<u> </u>			····-	
		Reverb. Time		0,62		J,56		1.52		U,5C		0,57		053

Wished reveral time Existing conditions

114

....

danoline[®] [creating expressive ceilings]

0

GLASS FACADES

.........

GLASS FACADES

11222

117

danoline® [creating expressive ceilings]

MEZZANINE

120

danoline® [creating expressive ceilings]

DRUM SOUND

124

danoline® [creating expressive ceilings]

1110000

SUM UP

- EFFICIENT ABSORBERS IN CEILING GIVES RISK OF ECHOS.
- LACK OF DIFFUSION GIVES VERY LOW EFFECT OF ABSORBERS

192

dar

[creating expressive ceilings]

SUM UP

- PRODUCT ABSORPTION PROFILE CAN BE DESIGNED.
- ABSORPTION VALUES FOR SPEECH CONTROL UNDER 0,70 aw
- ABSORPTION PROFILE FOR NOISE REDUCTION OVER 0,70 aw

127

[creating expressive ceilings]

danoline[®] [creating expressive ceilings]

SUM UP

- CEILING HIGH OVER 2,6 m SHOULD BE ADDED WITH WALL ABSORBERS.
- WORKPLACES WITH A CEILING HIGH OVER 4m IS NOT RECOMMANDED.

......

SUM UP

- SOUND REGULATING MATERIALS SHOULD BE PLACED WHERE THE SOUNDWAVES HIT FIRST.
- STRUCTURES MIRRORS THE SOUNDWAVES / THINK ABOUT THE FORM OF THE STRUCTURE AND HOW IT REFLECTS SOUNDS.

129

[creating expressive ceilings]

SUM UP

- FURNITURE HAS A MAJOR INFLUENCE OF SOUND DIFFUSION / AND THE EFFECT OF HOW EFFICIENT A ABSORBER IS PERFORMING.
- THE EFFECT IS VERY IMPORTANT IN LARGE ROOM OFFICES.

130

[creating expressive ceilings]

m m

......

GOAL

SOUND CONTROL THOUGH ARCHITECTURE AND INTORIOR DESIGN

KRAUF

141

.......

Measurements on site perforated gypsum or mineral wool

...........

142

ASTM

NRC (NOISE REDUCTION COEFFICIENT)

AVERAGE 250 – 2000 Hz

400mm SUSPENSION

EN STANDARDS: 200mm SUSPENSION

ASTM - NRC

Test area:	10.8 m^2
Room volume:	210 m^3
Room surface:	305 m^2

Frequency f [Hz]	αρ
125	0.45
250	0.60
500	0.75
1000	0.65
2000	0.65
4000	0.60

....

0.0

00

144
250 – 2000 Hz

Test area:	10.8 m^2
Room volume:	$210 \mathrm{m}^3$
Room surface:	$305 \ m^2$

Frequency f [Hz]	αρ
125	0.45
250	0.60
500	0.75
1000	0.65
2000	0.65
4000	0.60

00

145

AVERAGE

Test area:	10.8 m^2
Room volume:	210 m^3
Room surface:	$305 \ m^2$

Frequency f [Hz]	αρ
125	0.45
250	0.60
500	0.75
1000	0.65
2000	0.65
4000	0.60

....

0

146

danoline® [creating expressive ceilings]

NRC VALUE

Test area: Room volume: Room surface:	10.8 m² 210 m³ 305 m²		
Frequency f [Hz]	αρ		
125	0.45		
250	0.60		
500	0.75		
1000	0.65		

0.65

0.60

2000

4000

--

147

ASTM

NRC (NOISE REDUCTION COEFFICIENT)

AVERAGE 250 – 2000 Hz

Sound Lab

149

Sound Lab

150

.....

Short Reverberation time

50 ms = 17 m / 2 = 8.5 + 8.5

danoline[®] [creating expressive ceilings]

.....

Flutter Plain Tiles

153

dar

[creating expressive ceilings]

e®

Flutter Kinopanel

154

[creating expressive ceilings]

dar

dB Loss

Plain	125	250	500	1 ki i	2 kH	4kH
	-11,5	-11,8	-1,8	4,9	15.8	10,7
	-12	-17	-2,7	4.5	7,5	10,4
	-20	-22,3	-19	-8,4	5,5	-2,2
	8,5	10,5	17,2	13,3	10,3	12,9
	-14,2	-13,8	-1,2	4,4	16,4	10
	-14	-15,3	7,6	0.3	7,5	5,1
	-35,3	-40,5	-36	-22,6	-6,9	-15,2
Kinopanel	21,1	26,7	34,8	27	23,3	26,2
	-13.6	-15.3	-2	4,2	11,4	10,2
	-15.2	-29,8	-7.9	3,5	6,2	1.75
	-15.5	-42.8	-35.7	-18.7	-7.5	-13.9
	31,9	27,5	.13,7	22,9	18,9	24,1
	-11,6	-15,3	-2,65	1,7	S, 1	7,2
	-13	-13	-8.4	Q, 8	1.7	-
Different Tiles	-33	-36.4	-35	-24	-9,7	-16,6
	21,4	21,1	32,3	25,7	18,8	23,8
	-15.1	-14.3	- 1, 4	4,4	11.2	9,8
	-12.6	-13.5	7.7	2.4	5,3	4.9
	-39.5	-39.2	-34.4	-17.7	-4.6	-9.1
	26,4	24,9	33	22	15,8	18.9
	-11.1	-14.6	-2.7	-0,2	10,1	7
	-20	-21	-4.9	-1.5	4.E	4.6
	-37	-79	-29	-20	-4.6	-11.1
	25,9	24,4	26,3	19,8	14,7	18,1

156

danoline® [creating expressive ceilings]

Influence of friezes

Unfurnished classroom with perforated gypsum ceiling; no wall absorbers

157

0.00

dano

[creating expressive ceilings]

line®